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Abstract
We study both the structural and dynamic properties of charged colloids in
one-dimensional periodic substrates. The dependence of the static structure
and diffusion properties on the density and substrate parameters is investigated
by means of Brownian dynamics simulations. We find that the competition
between both particle–particle and particle–substrate interactions leads to a rich
variety of adsorbate phases or particle distributions. We also demonstrate that
the mean-square displacement, W (t), at long times shows the typical non-
Fickian behaviour, W (t) ∝ t1/2, even for periodic substrates. Moreover, we
show that the depinning of the particles can be directly quantified through a loss
of correlations in the structure or an enhancement of the particle mobility factor.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study and understanding of dynamical processes that occur in systems exhibiting
anomalous diffusive behaviour possess relevance in several disciplines ranging from physics
and chemistry to biology and medicine. Anomalous diffusion is the occurrence of a mean-
square displacement of the form W (t) ≡ 〈δx2(t)〉 ∝ tα , where α �= 1. Depending on the
anomalous diffusion exponent α, the motion can be either sub-diffusive (0 < α < 1) or super-
diffusive (α > 1). Recently, fractional anomalous diffusion in systems subjected to periodic
potentials has been investigated on the basis of the fractional Fokker–Planck equation [1].

In particular, the study of transport properties in quasi-one dimensions has become
crucial to the understanding of many systems, such as highway traffic flows [2], microfluidic
devices [3], transportation of adsorbate molecules through zeolites [4], among others. Usually,
the transport in one-dimensional channels is called single-file diffusion (SFD). This concept
has its origin in biophysics and allows us to account for the transport of water and ions through
molecular-sized channels in membranes [5].
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SFD is the process concerning diffusion of particles in confined quasi-one dimensional
geometries where the particles exhibit random-walk movements in channels so narrow that
no mutual passage is possible. As mutual passage is excluded, there is a correlation between
subsequent displacements, so that the motion of individual particles requires the collective
motion of many other particles in the same direction. Due to this restriction, the sequence of
particles remains unaffected over all time t . These peculiarities are reflected in their diffusive
behaviour, which presents strong deviations from normal diffusion.

Rigorous theoretical results for SFD have been derived in detail for the simple case of hard
rod systems [6–8], where it is predicted that the mean-square displacement (MSD) for times
much longer that the direct interaction time τ (i.e. the time that a particle needs to move a
significant fraction of the mean particle distance) is given by the relation [9]

lim
t�τ

W (t) = 2F
√

t, (1)

where F is the so-called SFD mobility factor. This non-Fickian behaviour is a striking feature
of SFD, in contrast to the linear increase with time in (open) systems with allowed mutual
passage. Recently, Kollmann [10] demonstrated that relation (1) remains valid for colloidal
and atomic systems independently of the nature of the interaction potentials for homogeneous
systems in the fluid state, provided that the correlation length between the particles is of finite
range and that the particles interact identically.

The experimental evidence confirming relation (1) was unavailable for a long time due
to the lack of ideal experimental systems. The first experimental observations of SFD were
realized in zeolitic materials, however the evidence of this process provided by different authors
remains contradictory (see e.g. [11] and references therein). Nevertheless, Wei et al recently
investigated the particle dynamics in narrow channels [12] by using quasi-one-dimensional
paramagnetic colloids.

After the work of Wei et al, several experiments using colloidal systems have been carried
out [13, 14]. In contrast with previous experiments, Lutz et al [11, 15] created 1D circular
channels by means of scanning optical tweezers in order to avoid the presence of lateral
confinement walls. This technique allows us to reduce the hydrodynamic interactions to have
a higher mobility. This experimental setup allows us to elucidate the typical diffusion of
suspended interacting charged particles in a free single file, i.e. in the absence of a substrate.
However, there is no experimental evidence on the way in which a modulated substrate affects
both the dynamics and structure of interacting particles along the channel. On the other hand,
from the simulation point of view, Taloni and Marchesoni [16] investigated the mobility of
point-like particles on periodic substrates. They found that the presence of the substrate does
not invalidate the diffusion law (1).

In the present paper, we investigate both the structure and dynamics of charged colloidal
particles in one-dimensional periodic substrates by means of Brownian dynamics (BD) as well
as Monte Carlo (MC) computer simulations. This interesting and intriguing subject, as we
will see further below, allows us to understand the physical properties, such as the particle
distribution and the efficiency of particle transport, of Brownian interacting particles confined
in narrow corrugated channels.

After the present introduction, in section 2 we describe the details of our model system
and the simulation techniques employed in this work. Although the diffusive nature of charged
colloids in a free single file is currently understood, in section 3 we summarize their main
structural and dynamic properties. In section 4 the Frenkel–Kontorova model [17, 18] is briefly
discussed to establish a direct connection with the structure of Brownian particles in different
corrugated potential landscapes. Also, the mean-square displacement and the mobility factor
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are analysed in terms of the substrate parameters. Finally, the paper is closed with a section of
conclusions.

2. Model system and simulation techniques

2.1. Interaction between colloidal particles

Colloidal particles are present in a large variety of biological, chemical and physical systems.
In the last few years, they have also been used as versatile model systems which allow
us to understand fundamental processes in atomic systems or to elucidate problems in the
context of statistical physics. Because the relevant interactions between colloids are easily and
independently tunable, and the colloid position is accessible by means of optical techniques
like video microscopy, they are used explicitly as well-controlled model systems. On the other
hand, it has already been demonstrated that colloids exposed to periodic laser fields can serve
as model systems for atomic monolayers [19].

Here we consider charged colloids with diameter σ . Then, after the hard-core interaction
(r > σ ), two colloidal particles separated by the distance r interact via the repulsive part of the
DLVO pair potential,

βu(r) = Z 2
effλB

[
eκσ/2

1 + κσ/2

]2
e−κr

r
, (2)

where β ≡ 1
kBT is the inverse of the thermal energy with kB the Boltzmann’s constant and T the

temperature, Zeff is the effective charge, λB is the Bjerrum length and κ is the Debye screening
parameter. The values of the parameters used in equation (2) are σ = 2.8 μm, Zeff = 5400,
λB = 0.72 and κ−1 = 550 nm. These parameters were taken from [19].

2.2. Simulation techniques

The structure of the suspension is discussed in terms of the pair distribution function g(x) and
the static structure factor S(qx), while the diffusive behaviour is obtained from the MSD, W (t).
The g(x) is computed by averaging on equilibrium configurations through the relation [20],

g(x) = 1

Nρ

〈
N−1∑
i=1

N∑
j>1

δ(x − xi j)

〉
, (3)

where the angular brackets 〈· · ·〉 denote a statistical (temporal or ensemble) average, ρ = N/L
is the particle number density and N is the number of particles. Instead of the Fourier transform
of the g(x), the static structure factor is simulated by using the relation [20]

S(qx) = N−1

〈(
N∑

i=1

cos(qxi · xi)

)2

+
(

N∑
i=1

sin(qxi · xi)

)2〉
, (4)

where qx is the magnitude of the wavevector. The MSD can be computed by means of the
expression,

W (t) = 〈
x(t)2〉 = N−1
N∑

i=1

〈(xi(t) − xi(0))2〉. (5)

The structural and dynamic properties given by equations (3)–(5) are then simulated by
using the so-called Brownian dynamics simulation method without hydrodynamic interactions,
which is based on Ermak’s algorithm [21, 22],

xi(t + 
t) = xi(t) + β D0 Fi (t)
t + xr
i (t), (6)
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Figure 1. Pair distribution function, g(x). (a) From left to right the packing fractions are
ϕ = 0.235, 0.288 and 0.333. (b) From bottom to top the packing fractions are ϕ = 0.4, 0.418,
and 0.458. (c) Static structure factor S(qx ) (symbols) obtained from BD simulations. The structure
is corroborated by means of MC simulations (solid lines).

where xi(t) denotes the position of the particle i at the time t , Fi (t) is the total force acting on it
due to its interaction with the other particles and the substrate, D0 is the free-particle diffusion
coefficient and xr

i (t) is a random displacement sampled from a Gaussian distribution with zero
mean and width 〈xr

i (t)
2〉 = 2D0
t .

In our simulations we move 900 particles according to Ermak’s algorithm in a line of
length L with periodic boundary conditions; movement in any other direction is not allowed.
This model system tries to reproduce the same experimental conditions used in the experiments
of Lutz et al [11, 15]. The time step used in our simulations is 
t = 10−4(ρ2 D0)

−1. The
structure is corroborated by standard Monte Carlo (MC) computer simulations [22]. A typical
MC run consists of 1 × 106 steps to reach the thermalization and 5 × 106 steps to perform the
statistics.

3. Charged colloids in a free single-file

Figures 1(a) and (b) show the pair distribution function, g(x), of charged colloidal particles in a
free single-file for different packing fractions, ϕ. One can observe that, for moderate densities
(figure 1(a)), g(x) takes the same properties of two- and three-dimensional interacting systems:

(i) as particles interact strongly repulsively at short distances, they do not feel the hard-core
interaction, g(r = σ) = 0;
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Figure 2. (a) Reduced mean-square displacement, W∗(t), for different packing fractions obtained
from BD simulations. (b) Reduced mobility factor F∗ as a function of ϕ extracted from the fit to
the simulation data according to relation (1). The solid line is just a guide for the eye.

(ii) it shows a typical fluid-like order, i.e. it decays to its corresponding ideal-gas value,
g(x) ≈ 1, according to the range of the interaction; and

(iii) particles are distributed uniformly in the whole space available.

However, at higher densities (figure 1(b)) the characteristic length scale of the system is
determined by the mean interparticle distance, d = ρ−1; the peaks are successively separated
by the distance d . This fact is corroborated by the structure factor, S(qx), shown in figure 1(c),
where the main peak is moving from right to left according to the bulk density until reaching
the position qxd ≈ 2π . Our results are corroborated by Monte Carlo simulations (solid lines)
which basically reproduce the same structural information.

The reduced mean-square displacement, W ∗(t) ≡ W (t)/d2, and the reduced single-file
mobility factor, F∗ ≡ Fρ/D1/2

0 , are shown in figures 2(a) and (b), respectively. The behaviour
observed in both figures is in qualitative agreement with the experimental results of Lutz et al
[11, 15]. At sufficiently short times, t < 10−3(ρ2 D0)

−1, where the displacement of individual
particles is governed by the interaction with the solvent, normal diffusion occurs and the MSD
is found to be W (t) ∝ t . By increasing the time, the presence of adjacent particles becomes
more important until eventually a crossover occurs at times t > 10−1(ρ2 D0)

−1, where W (t)
scales as t1/2. The crossover time from normal diffusion to sub-diffusion occurs at earlier time
as ϕ is increased. This is due to the fact that, on increasing the particle density, the direct
particle–particle interaction becomes more important, including at shorter times.

The tendency shown by the MSD tells us that particles are accelerated linearly in time
at short times, however at long times, after several particle collisions, particle acceleration
is reduced, varying proportionally with t1/2. This reduction in the particle acceleration is
due to the energetic barrier imposed by the other neighbouring colloidal particles. On the
other hand, the mobility decays with density in an exponential-like way (figure 2(b)). This
monotonic behaviour has also been observed experimentally in zeolites at low temperatures [9]
and recently in highly charged colloids [11, 15] and it is in qualitative agreement with an
analytical expression derived for hard rods [9].

Due to the system being highly structured and the particle dynamics being practically
suppressed at high densities, a possible liquid–solid-like transition is expected. However,
further analysis in this direction is necessary to derive a static or dynamic criterion for
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Figure 3. A typical (a) pair distribution function, g(x), and (b) static structure factor, S(qx ), in the
Frenkel–Kontorova model for the case K �= 0 and V (xn; b) = 0.

determining the point of the liquid–solid transition in a system composed of interacting particles
in a free single-file.

4. Brownian interacting particles on periodic substrates

4.1. Frenkel–Kontorova model

The simplest one-dimensional model for particles adsorbed on a periodic substrate was
proposed by Frenkel and Kontorova. It provides a simple and realistic description of
commensurate–incommensurate transitions when thermal fluctuations are unimportant, as they
are near zero temperature [17, 18]. However, as we will see further below, thermal fluctuations
play an important role in the system that we consider here, and hence cannot be completely
neglected.

The adsorbed particles at positions xn in the Frenkel–Kontorova (FK) model are treated
as a harmonic chain with equilibrium lattice spacing a. The substrate is a one-dimensional
periodic lattice with period b. The interaction between the nth adsorbed particle and the
periodic substrate is described by a potential energy V (xn) characterized by the period b. The
potential energy of the FK model is thus

UFK =
∑

n

[
1
2 K (xn+1 − xn − a) + V (xn; b)

]
. (7)

The first, or elastic, term in (7) favours a periodic lattice of adsorbed particles with xn = na.
This behaviour can be observed in the distribution function of figure 3(a) and its corresponding
structure factor, figure 3(b), which shows a pronounced peak at the position qxa = 2π . The
second, or potential, term favours lock-in to the substrate, with each xn an integral multiple
of b. This case shows the same structural properties in terms of the structure functions, g(x)

and S(qx), as shown in figure 3 by replacing a → b. If V (x; b) = 0, the adsorbate lattice
spacing will be independent of b. The resulting structure is called a floating phase, in which the
equilibrium lattice spacing a of the adsorbate lattice can be an arbitrary (including irrational)
multiple of the substrate periodicity b. Thus, the floating phase is incommensurate for almost
all values of the ratio a/b. In the opposite limit, where the potential is very large, one can
expect each particle of the adsorbed lattice to sit in a minimum of the potential V . This leads to
a commensurate structure, with the average spacing between adsorbate particle being a rational
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multiple of b. For the case in which V is approximated by a cosine function, the rich FK phase
diagram is described in detail in [18].

On the other hand, we consider a system where the adsorbed particles interact continuously
through the potential given by equation (2). This means that each particle interacts not just
with its nearest neighbor, as in the FK model. However, we expect to find structural properties
similar to those already found in the FK model [18]. The energy potential of our system can
then be written as

U =
∑
i< j

u(xi j) +
∑

i

Vext(xi), (8)

where the first term takes account of the pair interaction, while the second term describes the
particle interaction with the periodic substrate,

Vext(x; aL) = V0 sin

(
2πx

aL

)
, (9)

V0 being the substrate strength, x the particle position, and aL the substrate periodicity.

4.2. Structure

To characterize the structural properties fully, we determine both the pair correlation function
and the static structure factor by varying the substrate parameters, V0 and aL , and the packing
fraction, ϕ.

As already discussed in the last section, in the absence of the substrate (V0 = 0) and
at high densities (ϕ � 0.4) we found that the colloids form a highly ordered fluid with the
mean particle distance d = ρ−1 as the characteristic length scale (see figure 1(b)). From d
we define the ratio p ≡ d/aL = ϕ−1( σ

aL
), which allows us to characterize the resulting type

of commensurate, or incommensurate, structure. Initially, V0 was chosen to be sufficiently
small in order to allow particle fluctuations across the substrate barriers, i.e. to reach thermal
equilibrium properly. Then V0 was gradually increased until reaching the desired value.

Figure 4(a) shows the correlation function (symbols) for the case aL = σ with ϕ ≈ 0.407,
which corresponds to p ≈ 2.45 for three different substrate strengths: V0 = 1.2, 2.0 and
3.6 kBT . For the sake of the discussion, we also plot the positions of the peaks (solid lines)
corresponding to the case V0 = 0 (multiples of d ≈ 2.45σ ). From the figure, one clearly
observes that the substrate induces changes in the local structure of the suspension. In general,
one can describe the following similar features:

(i) the peaks are slightly shifted with respect to the case without the substrate;
(ii) the substrate induces correlations among particles at separations smaller than d due to there

being almost three substrate periods for each mean separation; and
(iii) both the shift in the peak positions around d and the particle correlations become stronger

with the substrate strength.

As V0 increases, the tendency of adsorbed particles to seek potential minima also increases.
Nevertheless, the values of V0 chosen in this work are not sufficiently large to favour a
periodic lattice of adsorbed particles on each substrate minimum. Nonetheless, the competition
between both contributions in equation (8) leads to a rich variety of adsorbate phases or particle
distributions. For instance, one can notice that the nearest neighbour is closer to any central
particle than in the case without a substrate, whereas the second neighbour becomes closer to
the first one but is further from the third one. This interesting phenomenon can be visualized
better in the static structure factor S(q), which gives relevant information about the length
scales of the system by looking at the position of its peaks. In figure 4(b) we show S(q) for
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(c)

Figure 4. (a) Pair distribution functions for the case aL = σ with ϕ ≈ 0.407 for three different
substrate strengths: V0 = 1.2, 2.0 and 3.6 kBT . The perpendicular solid lines represent the position
of each maximum for the case V0 = 0. (b) Static structure factors. The curves are shifted for clarity.
(c) Average configuration of the particles along the channels. From top to bottom, the substrate
strengths are V0/kBT = 0, 0.8, 1.6, 2.0, 2.8, 3.6 and 4.4. The sinusoidal term of equation (9) is
plotted (dashed lines) on each channel to understand the way in which the particles are positioned
with respect to the substrate minima.

the systems of figure 4(a). One can distinguish three peculiar peaks at the following positions:
(i) qxσ ≈ 2.6—this peak is related to the position of the first peak of the g(x); (ii) qxσ = 2π—
such a peak is linked to the substrate periodicity; and (iii) qxσ ≈ 8.9—this peak progressively
increases with V0 and is directly involved with the separation between the first and second
neighbour. Then the peaks at the positions qxσ ≈ 2.6 and qxσ ≈ 8.9 reveal that two adsorbed
particles can be further and closer, respectively, than the distance between two consecutive
substrate minima. These kinds of particle distribution have also been observed in the Frenkel–
Kontorova model (see, e.g., [18]) and are called discommensurations because they break the
commensurate registry of the adsorbate and substrate lattices. However, the height of the peak
at qxσ = 2π indicates that there are regions on the substrate where the particles are located on
the substrate minima. This happens at large distances, where the structural order is basically
dominated by the substrate periodicity because the pair interaction is practically turned off at
large separations. Figure 4(c) shows the snapshots of the average particle positions.

The case aL = 2σ (p ≈ 1.23) shows similar structural properties to the case discussed
previously (data not shown). As aL changes, new types of incommensurate structures are
observed. Also, new length scales are found.

So far, we have analysed systems in which the substrate periodicity is smaller than d or
p > 1. In such cases the incommensurate phases show similar structural properties. We
now look at the case p < 1. This case is illustrated in figure 5 for aL = 3σ or equivalently
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(c)

Figure 5. (a) Pair distribution functions for the case aL = 3σ with ϕ ≈ 0.407 for three different
substrate strengths: V0 = 1.2, 2.0 and 3.6 kBT . The perpendicular solid lines represent the position
of each maximum for the case V0 = 0. (b) Static structure factors. The curves are shifted for clarity.
(c) From top to bottom, the substrate strengths are V0/kBT = 0, 0.8, 1.6, 2.0, 2.8, 3.6 and 4.4. The
sinusoidal term of equation (9) is plotted (dashed lines) on each channel to understand the way in
which the particles are positioned with respect to the substrate minima.

p ≈ 0.82. It is evident that the g(x) is not as structured, or correlated, as in the previous
cases (including also the case without a substrate). In fact, the distribution functions are almost
identical, although the height of the minima and maxima decrease slightly when V0 increases.
This intriguing result, in contrast to the previous cases, suggests a kind of loss of correlation
among the particles and a possible depinning of the adsorbed particles from the sinusoidal
substrate. This is confirmed by the structure factor in figure 5(b). It shows practically one peak
at the position qxσ ≈ 2.65 which is related to the mean separation among particles, confirming
then that the local order at short and large separations has notably decreased. On the other
hand, by looking at the height of the S(q) at the position qxσ = 2π/3 (and integer multiples
of it) one can appreciate that there are no regions of particles on the substrate minima. This is
clear evidence of the depinning effect. Also, the snapshots of figure 5(c) allow to visualize that
the particle positions do not change dramatically for any value of V0 �= 0. Our findings were
corroborated with MC simulations (data not shown).

To illustrate the effects due to the variation in the density, we now fix the substrate
periodicity to the experimental value aL = 5.5 μm [19] and the substrate strength V0 =
3.6 kBT . Figure 6(a) shows the distribution function for several packing fractions, 0.288 �
ϕ � 0.43. At small densities (ϕ < 0.3) the particles are, on average, in each substrate
minimum due to the energy per particle without substrate always being smaller than V0 and
each g(x) for ϕ < 0.3 collapsing in the same curve (see, for example, g(x) for ϕ = 0.288).
However, at higher densities the pair interaction between particles becomes as relevant as the

9
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Figure 6. (a) Pair distribution functions for the case aL = 5.5 μm with V0 = 3.6 kBT for different
packing fractions (from bottom to top) ϕ = 0.288, 0.317, 0.362 and 0.43. (b) Static structure
factors. The curves are shifted for clarity.

Figure 7. Reduced mean-square displacement, W∗(t), for the system of figure 4 for different
substrate strengths: (a) V0 = 0, 0.8, 1.2, 1.6 and 2.0 kBT ; (b) V0 = 2.8, 3.6 and 4.4 kBT .

substrate–particle interaction, and therefore the competition between both interactions leads to
a rich variety of incommensurate phases. The non-monotonic variation in the structure results
from the fact that, for packing fractions smaller than ϕ = 0.4, the mean particle distance in the
absence of a substrate does not scale according to the relation d = ϕ−1σ (see figure 1(a)) and
then the factor p also changes in a non-monotonic fashion. Nonetheless, the structure factor in
figure 6(b) also indicates that two particles can be closer or further than the distance between
two consecutive substrate minima (see the peaks around the position qx aL = 2π ).

4.3. Dynamics

The reduced mean-square displacements, W ∗(t), for the system described in figure 4 are shown
in figure 7(a) for small substrate strengths V0/kBT = 0, 0.8, 1.2, 1.6 and 2.0, and in figure 7(b)
for high substrate strengths V0/kBT = 2.8, 3.6 and 4.4. In both figures (and in all cases that
we here considered), we appreciate that at sufficiently short times (t < 10−3/ρ2 D0), where
the individual particles do not feel direct interactions with the other colloids, normal diffusion
occurs and the mean-square displacement is found to be W (t) ∝ t . At long times, surprisingly,
the diffusion law given by (1) still remains valid. For small V0, the transition from normal

10



J. Phys.: Condens. Matter 19 (2007) 226215 S Herrera-Velarde and R Castañeda-Priego

Figure 8. Reduced mean-square displacement, W∗(t), for the system of figure 5 for different
substrate strengths: (a) V0 = 0, 0.8, 1.2, 1.6 and 2.0 kBT ; (b) V0 = 2.8, 3.6 and 4.4 kBT .

Figure 9. Reduced mobility factor, F∗, as a function of the substrate strength, V0, for different
substrate periodicities, aL = σ , 2σ and 3σ with ϕ = 0.407. The line is just a guide for the eye.

diffusion to sub-diffusion occurs continuously. For high V0, however, the diffusion of particles
is severely affected by the energetic barrier created by the periodic substrate; see figure 7(b).
In this case we observe that at intermediate times the particles now diffuse more slowly than
at short and long times. The reduction in particle diffusion is due to the particles now having
to spend a longer time jumping between several substrate minima before reaching diffusional
collective motion. This causes the particles to diffuse (or oscillate) around the position of
each minimum for a long period of time. At sufficiently long times, i.e. when the particles
diffuse a considerable number of mean interparticle distances, the diffusion law W (t) ∝ t1/2

is recovered. However, the time needed to surmount the energetic barrier increases with the
substrate strength. In fact, to reach the sub-diffusion regime at long-times, one must carefully
simulate for times much longer than the typical experimental times [11, 15]. On the other hand,
the mobility factor reduces when V0 increases (see black circles in figure 9).

The results for W (t) in the case aL = 2σ are quantitatively similar to the case discussed
previously (data not shown); they show the same behaviour at all time regimes but, as is
illustrated in figure 9 (open circles), the mobility factor is, in general, larger. The case aL = 3σ

is visualized in figures 8 and 9 (open triangles). Here one can observe that, for any substrate
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Figure 10. (a) Reduced mean-square displacement, W∗(t), for the case aL = 5.5 μm with
V0 = 3.6 kBT for different packing fractions: ϕ = 0.288, 0.317, 0.362 and 0.43. (b) Main body:
reduced mobility factor F∗ for V0 = 1.2 kBT . Inset: reduced mobility factor F∗ for V0 = 3.6 kBT .
The line is just a guide for the eye.

strength, W (t) behaves in the same fashion as a free single-file (V0 = 0), although the (small)
differences can be noticed at long times. Surprisingly, the mobility factor F is enhanced and
takes values larger than the case without a substrate. This effect is due to the so-called noise-
assisted effect, in which the thermal fluctuations act cooperatively, leading to a higher particle
mobility. This effect, already seen in the diffusion of a single Brownian particle drifting down
a tilted washboard potential [23], is also responsible for the evident changes in the structure of
the system that we have already discussed in figure 5. In the absence of thermal noise (FK-
like models), this effect cannot take place. The enhancement of F with respect to the case
without a substrate also reveals the depinning of the file from its sinusoidal substrate. Then, we
have shown that the depinning can be quantified directly through a loss of correlations in the
structure or an enhancement of the particle mobility factor. These results can be corroborated
in experiments with light forces [19].

On the other hand, the diffusion properties illustrated in figures 7–9 seem to validate the
relation (1) for the type of periodic substrate considered here. However, to have a complete
understanding of the diffusion properties in this system, we must take into account density
variations. Therefore, in figure 10(a) the results for W (t) of the system described in figure 6
are analysed. One can immediately observe that at short and intermediate times the behaviour
is basically the same as in the other cases for any filling fraction, including the asymptotic
behaviour at long times, W (t) ∝ t1/2, remaining valid for packing fractions ϕ < 0.4.
Nevertheless, for the case ϕ = 0.43, a strong deviation is clearly observed. This deviation can
be due to the fact that at such density the particles are not able to surmount the energetic barrier
imposed by the combination of both the pair interaction and the substrate. Then the time needed
to reach the diffusive collective motion increases with the density, or the substrate strength.
Figure 10(b) shows the mobility factor for several packing fractions with V0 = 1.2 kBT and
V0 = 3.6 kBT (inset). In both cases, F decreases with density, as in the free file, but its
magnitude varies according to the substrate potential.

5. Conclusions

We have investigated the structure and dynamics of charged colloidal particles in one-
dimensional periodic substrates by means of Brownian dynamics simulations. In summary,
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we found that:

• The competition between both the particle–particle and particle–field interactions gives
rise to a rich variety of adsorbate phases or particle distributions. In particular, we observed
that two colloids can be closer or further than the distance between two consecutive
substrate minima.

• The non-Fickian behaviour observed experimentally and predicted theoretically by
Kollmann is here corroborated and extended to the case of sinusoidal periodic substrates;

• The depinning of the particles is captured by the structure and the corresponding mobility
factor. This result can be corroborated in experiments on charge-stabilized colloidal
suspensions under the influence of light forces. Experiments in such a direction can also
allow the determination of the file depinning threshold.
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